
REPORT 1067 •

GENERALIZATION OF BOUNDARY-LAYER MOMENTUM-

INTEGRAL EQUATIONS TO THREE-DIMENSIONAL

FLOWS INCLUDING THOSE OF ROTATING SYSTEM

By ARTUR MAGER

Lewis Flight Propulsion Laboratory
Cleveland, Ohio



National Advisory Committee for Aeronautics

Headquarters, 1724 F Street NK, Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study
of the problems of flight (U. S. Code, title 50, sec. 151). Its membership was increased from 12 to 15 by act

approved March 2, 1929, and to 17 by act approved _i[ay 25, 1948. The members are appointed by the President,
and serve as such without compensation.

JEROME C. HUNSAKER, Sc. D., Massachusetts Institute of Technology, Chairman

ALEXANDER WETMORE, Sc. D., Secretary, Smithsonian Institution, Vice Chairman

DETLEV W. BRONK, PR. D., President, Johns Hopkins Univer-

sity.

JOhN H. CASSADY, Vice Admiral, United States Navy, Deputy

Chief of Naval Operations.

EDWARD U. CONDON, Pm D., Director, National Bureau of

Standards.

HON. T_OMAS W. S. DAVIS, Assistant Secretary of Commerce.

JAMES H. DOOLXTTLE, SC. D., Vice President, Shell 0il Co.

R. M. HAZEN, B. S., Director of Engineering, Allison Division,

Genera_l Motors Corp.

WILLIAM L_TTLEWOOD, M. E., Vice President, Engineering,

American Airlines, Inc.

THEODORE C. LONNQUEST, Rear Admiral, United States Navy,

Deputy and Assistant Chief of the Bureau of Aeronautics.

HON. DONALD W. NYROP, Chairman, Civil Aeronautics Board.

DONALD L. PU'[T, Major Geperal, United States Air Force,

Acting Deputy Chief of Staff (Development).

ART_VR E. RAYMOND, SC. D., Vice President, Engineering,

Douglas Aircraft Co., Inc.

FRANCIS W. REICHELX)ERFER, SC. D., Chief, United States

"Weather Bureau.

GORDO_ P. SAVr_LS, Major General, United States Air Force,

Deputy Chief of Staff (Development).

HON. WALTER G. WHITMAN, Chairman, Research and Develop-

ment Board, Department of Defense.

T_EODORE P. WRr(]HT, Sc. D., Vice President for Research,

Cornell University.

HUGH L. DRY'DEN, Pm D, Director

John W. CROWLEY, JR., B. S., Associate Director for Research

JOHN F. V[CTORY_ LL. D., Executive Secretary

E. H. CnaMBERLI'N, Executive Officer

HEXRY J. E. RAID, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va.

SMITh J. DEFRANCE, B. S., Director Ames Aeronautical Laboratory, Moffett Field, Calif.

EDWARD R. SUARP, SO. D., Director, Lewis Flight Propulsion Laboratory, Cleveland Airport, Cleveland, Ohio

TECHNICAL COMMITTEES

AERODYNAMICS OPERATING PROBLEMS

POWER PLANTS FOR AIRCRAFT INDUSTRY CONSULTING

AIRCRAFT CONSTRUCTION

Coordination of Research Needs of Military and Civil Aviation

Preparation of Research Proorams

Allocation of Problems

Prevention of Duplication

Consideration of Inventions

t :_ ..5'-

5

:;?:=

:L-': !

7 ;_5"

- "7:

.-'2

,T:

:? .-

,,.*(.

_L

:2 '

/.;.-.

£,

:_'t,

2

a-

t

LANGLEY AERONAUTICAL LABORATORY t AMES AERONAUTICAL LABORATORY, LEwis FLIGHT PROPULSION LABORATORY,

Langley Field, Va. Moffett Field, Calif. Cleveland Airport, Cleveland, Ohio

Conduct, under unified control, for all a_encies, of scientific research on the fundamental problems of flight

OFFICE OF AERONAUTICAL INTELLIGENCE,

Wa.shington, D. C.

Collection, classification, compilation, and dissemination of ._cientific and technical information on aerona,tics

II



REPORT 1067

GENERALIZATION OF BOUNDARY-LAYER MOMENTUM-INTEGRAL EQUATIONS TO

THREE-DIMENSIONAL FLOWS INCLUDING THOSE OF ROTATING SYSTEM _

By AR'rUR MACW.R

SUMMARY

The Navier-Stokes equations oJ motion and the equation of

continuity are transformed so as to apply to an orthogonal

currilinear coordinate system rotating with a uniform angular

velocity about an arbitrary axis i.n space. A usual simplifica-

tion of these equations as consistent with the accepted boundary-

layer theory and an integratiou qf these equations through the

boundary layer result in boundary-layer momentum-integral

equations .for three-dimensional flows that are applicable to

either rotating or nonrotating fluid boundaries.

These equations are simplified and an approximate solution

in closed integral.form is obtained.for a generalized boundary-

layer momentum-loss thickness and flow deflection at the wall

in the turbulent case.

A numerical evaluation o.f this solution carried out.for data

obtained in a curving nonrotatlng duct shows a fair quantita-

tive agreement with the measured values.

The.form in which the equations are presented is readily

adaptable to cases of steady, three-dimensional, incompressible

boundary-layer flow like that o_;er curved ducts or yawed wings;

an.d it also may be used to describe the boundary-layer flow over

mrious rotating surfaces, thus applying, to turbomachinery,

propellers, and helicopter blades.

INTRODUCTION

The development of the boundary layer on the various

parts of turbomachinery (compressors and turbines), heli-

copter blades, propellers, and in curved ducts is influenced by

centrifugal and Coriolis forces in addition to the pressure and

viscous forces. As a result of these forces, the flow in the

boundary layer not only has the characteristic velocity

deficiency but also has, because of this velocity deficiency,

direction different from that of the flow outside the boundal T

layer. Thus the behavior of the boundary layer in three-

dimensional flow may be quite unlike the behavior in two-

dimensional flow. The effect of these additional forces on the

boundary layer has been realized for some time and the

observed discrepancies in the boundary-layer behavior have

usually been explained only in a qualitative manner as, for

example, in references 1 to 4.

The literature concerning the theoretical aspect of the

three-dimensional boundary-layer flow is meager. For the

laminar case most of the published work has been carried out

in connection with the yawed wing (references 5 to 7). For

the turbulent case, although a number of researchdrs have

established the general form of the differential equations

_ Supersedes NACA TN 2310, "Generalization of Boundary-Layer Momentum-Integral

Mager, 1951.

997810--52

applicable, no actual solutions of these equations have been

obtained. Tetervin, for example, presents boundary-layer

momentum-integral equations in three dimensions for a fluid

of variable density and viscosity (reference 8). Gruschwitz

establishes the momentum-integral equations for boundary-

layer flow along an arbitrarily curved streamline in reference 9.

Bm'gers gives the differential equations on the develop-

ment of boundary layers in the case of axially symmetric

flows having a rotational component (reference 10). Prandtl,

in addition to presenting a form of three-dimensional

momentum-integral equations, suggests the general procedure

that could be followed to obtain a solution (reference 11).

Experimental data are similarly lacking. In spite of con-

siderable literature search, only the data of Gruschwitz

(reference 9) for a curved duct and the data of Kuethe,

McKee, and Curry (reference 12) for a yawed wing were

found.

As a result of research on this problem at the NACA

Lewis laboratory, the boundary-layer momentum-integral

equations are derived and presented herein for a set of

orthogonal curvilinear coordinates, which may or may not

be rotating about an arbitrary axis in space and can be laid

out along a streamline of the potential flow. The so gen-

eralized equations are then transformed by use of an assumed

velocity distribution and friction law for turbulent boundary

layer so that an approximate solution can be obtained for

the boundary-layer momentum thickness and the direction

of boundary-layer flow. Finally, a numerical solution is

carried out for the Gruschwitz data in order to make a

comparison between the estimated and actual measured

values.

The equations as given in their generalized form are

readily adaptable to cases of steady, three-dimenslonal,

incompressible boundary-layer flow involving centrifugal

and Coriolis forces. The approximate solution, however,

has been carried out only for the turbulent boundary layer,

because in most of the aerodynamic configmrations, where

these equations apply, transition from laminar to turbulent

flow occurs comparatively early in the flow process. A

laminar form of the approximate solution can be obtained

by simple substitution of a suitable velocity profile and

friction law.

It should be noted that whereas the differential equations

describe the flow phenomena with only the accepted simpli-

fications, the approximate solution depends to some extent

on the assumed boundary-layer velocity profiles and the

relation for friction. Both of these assumptions were made

Equations to Three-Dimensional Flows Including Those of Rotating System" by Artur
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on the basis of the data of Oruschwitz (reference 9) only,
because the data of reference 12 were not adaptable to

extensive computations for the purpose of this analysis.
The measurements of Gruschwitz, on the other hand, have
certain shortcomings as they were obtained in a nonrotating

channel formed by two circular-arc shaped walls. Thus the
generality of the velocity profiles measured by Gruschwitz
is in question. A revision of the approximate solution can

therefore be expected when more data become available• In
addition, any speculation on the occurrence of boundary-

layer separation (which by definition is a special form of a
velocity profile) would be absolutely meaningless; no further

mention will therefore be made of this phase of the problem.

SYMBOLS

The following symbols are used in this report (the

dimensions are given in right-hand column):

A constant occurring in second ap- (/-])
proximation for 0

resultant acceleration vector in (lt -_)
fixed (inertial) system

resultant acceleration vector in (lt -_')
Cartesian coordinate system

constant occurring in second ap- (0)
proximation for

position vector of particle (l)

curvature of x-axis (fig. 1), d_
d-i (l-_)

constant >___ (1)

( o.o,_..+.+f-,',:,+,.'_
e \ (+- a)j+, o, ] (0)

(_ f+'=+,+A
e \ +J+, / (0)

w_ d£) (o>
rate-of-strain components (t -t)

resultant-force vector acting on (mlt -_)
particle

components of body forces per (lt -'_)
unit mass

function describing boundary- (0)
layer velocity profile, also taken

1

function describing boundary- (0)
layer velocity profile, also taken

ZLJ, K,L

h_, h_.,hi
l

MN

m

P

Pxx,Prr,

R

Re

r

S

8

t

c;v,w

uo, Vo,W_

l_,g',W

x,Y,Z
X, y, Z

Z,(_)
Ot

+:,+:

_,, ._÷, _-
0

0_, 0., Om 0._

quantities describing relations (0)

among various characteristic
loss thicknesses in boundary

layer
transformation coefficients (0)

length

parameter detemnining nature of (0)
boundary-layer equations

mass

static pressure (ml-tt -_')

components of stress per unit (ml-q -+')
area in Cartesian coordinate

system
resultant velocity vector (lt -_)

perpendicular distance of particle (l)
from axis of rotation

Reynolds number based on 0=,O=U (0)

radius of circle (l)

total path length "is dx (l)

arc length (1)
time

values of u, v, and w outside (lt -_)
boundary layer

velocities in Cartesian coordinate (lt -_)

system
time averaged velocities in curvi- (lt -_)

linear coordinate system

Cartesian coordinate system (l)
orthogonal curvilinear coordinate (l)

system
function used in transformation (l)

boundary-layer deflection angle (0)
measm'ed from direction of re-

sultant skin-friction stress to
direction of flow outside bound-

ary layer

angle between X-axis and tangent (0)
to x-axis

boundarydayer thickness (l)
displacement thicknesses in three- (l)

dimensional boundary layer
measure of boundary-layer deflec- (0)

tion, tan
slope of characteristic line (0)

generalized boundary-layer (l)
momentum-loss thickness,
O_Re _/4

momentum-loss thicknesses in (l)

three-dimensional boundary

layer
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F

_,,_, _-

p

O'z, Tzy, •

To

¢

COX_ COY_, _OZ

COx, COV_ CO:t

Subscripts:
i

.g

Z

I, II

variable of function ¢,, (1)

,--J

kinematic viscosity (Pt-O

components of vorticity vector (t -_)
density (ml -_)
apparent stresses existing in tur- (ml-_t -_)

bulent flow

shear stress at wall (rnl-_t -_)

arbitrary function satisfying
equation (39) and boundary
conditions

lL 4 j

angular velocity (t -t)
components of vector COin Car- (t-_)

tesian coordinate system
components of vector COin curvi- (t -_)

linear coordinate system

initial valuo
z-direction

z-direction

order of approximations

For Gruschwitz data-point designations and streamline

designations, see figure 2.
"-X

\
X

Z
X=_o= cos APdx + = sin ,_
T.V, Z-Z_ + z cos
Z= t _ e_

t con, _nr-jo sin _ d_r
dd

e= _a: ,a=,a(=)

FIOt;RE l.--Transformation from Cartesian coordinates .I", Y, Z to orthogonal curvilinear

coordinates ,r, g, z.

DERIVATION OF BOUNDARY-LAYER MOMENTUM-INTEGRAL
EQUATIONS

The equations for steady flow of a fluid having constant

density are derived in a Cartesian coordinate system X,Y,Z

•., _ .

,-,_L-. _" cj_ _l i_ _

.1 17 18 19 _0

/',4 _ _r.k:r.L.4r_ m

: i
t

-tJd ft-

_. "D "° _.. JI

i i-i
I:II: Ill:I'7V

(b)

(a) Channel and measuring plate seen from below.

(b) _[easuring plate seen from below, showing point and streamline desigzta_ions. Shade@

sections Indicate roglons of potential-flow breakdown.

Ftv, t_az 2.=Exlwrimental _tup of flruschwitz (from figs. I am! 5 of reference ,q).

rotating with uniform angular velocity about an arbitrary

axisin space. These equations are then transformed to an

orthogonal curvilinearcoordinate system x,y,z such that

the z-axiscan be placed along any convenient path in the

XZ-plane, which isconsidered as a plane of a wall. These

equations are then simplifiedin a man_ier consistentwith

the boundary-layer theory. If the path ischosen so as to

match a streamlineof the potentialflow,only one velocity

willexistoutsidethe boundary layer,that along the stream-

line. Furthermore, the changes inboundary-layer quantities

in a directionother than that along the streamline are ex-

pected to be relativelysmall incomparison with the changes-

along the streamline. Additional simplifications may thus
be possible. Finally, integration through the boundary
layer _ves the generalized form of momentum-integral

equations for three-dimensional flows that may or may not
invol_-e rotation of the system.

Equations for steady flow of fluid with constant density

in rotating Cartesian coordinate system.--The Naviero
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Stokes equations of flow for a fixed Cartesian coordinate
system X,Y,Z (reference 13, p. 576) are

DUo f bPxx bpvx bpzx
o --b-/-=o. x +--£V-+-_-y-+-_Z- (1 a)

D Vo 5pxr bprr bpzr
--ffi-= p] _+ _-X-+-g-F-+-sz- (lb)

DWo - bprz bprz bpzz
' -DT=PJ_+-_:r-+-5--g_4 _z (Ic)

and the equation of continuity is

b U ± b Vo _ b lVo n
b£yTS-g-_WZ--_, (2)

It is now assumed that this Cartesian coordinate system is

rotating with a uniform angular velocity _ and that the
observations of the motion of the fluid particles are still

made from a position rigidly attached to the same system.
The velocity :o and _cceleration :o are as seen by the ob-
server, that is, they are relative to the X,Y,Z system.

Because of the rotation, however, the X,Y,Z system is not
an inertial system (reference 14, p. 53) and thus the second

law of motion holds only with respect to acceleration
relative to some other system that is nonrotating,

m'5=F

In terms of _o then (reference 14, p. 104),

m_o+mwX (wXb) + 2m_X_o=F

Here mwX(wXb) represents the centrifugal force and

2mo_X'qo is the Coriolis force•

Thus for a Cartesian coordinate system rotating with a
DU_ DVo

uniform angular velocity w, the expressions for _-,-_-,

DIt]
and _ must be modified by proper components of the

Coriolis and centrifugal accelerations. For steady flow, the

component accelerations as referred to a rotating Cartesian
coordinate system are therefore

DU rr bU°-_v b:\, ,,_ bU,, . z bR
W= _° 5-X-- • ° bY ±"° _Z + 2(''Y_ °-''' v')-'' RjX

(3a)

DVo . bFo bVo. bVo _ _R
-ffi-= 50_-y+ Vo-_-y+Wo _Z+ 2(.,_5o- _xwo)- _ R 5-_

(3b)

DWo -. _14o bWo __, bWo ,. o_bR
-D-K= c'°_Z+ v° 5-Y + }t °_Z + 2(,o_ Vo- o,_rSo)-_-_- Z

(3c)

The equation of continuity, which does not involve any
accelerations, remains the same.

Transformation to orthogonal eurvilinear coordinate sys-
tem.--Transformations similar to those of Gruschwitz

(reference 9) are used as indicated in figure 1 with the pre-
caution that the system remain right-handed. -

x=; }
cos _ dz + z sin

y= y (4)

Z=Zt+z cos t_

where

and

Zt=constant-- fz sin f_dx
j0

_=_(x)

Use of these transformations permits an arbitrary curva-

ture of the x-ares in only one plane, the XZ-plane. Thus
the solution is somewhat restricted. In two-dimensional

boundary-layer investigations, however, it is found that the

boundary-layer equations are unaffected if the radius of
curvature in the XY-plane is large as compared with the

boundary-layer thickness (reference 15, p. 120). In three-
dimensional boundary layer the same-limitation will
probably apply providing, of course, the values of w_, w_,

and _, are properly adjusted to take care of this additional
curvature. Setting

gives

dt_ (curvature of x-axis)

5X . bX 5X
_xx ----(1 +cz) cos/_ --_-0by _z-z-sin_ 3

_Y _r _r=0
bx --0 --=lby 5z

OZ bZ 00Z
--=bx --(1 _-cz) sin 3 _-_- "_-z ----cos 3

The elements of length at (x, y, z) in the direction of the
increasing coordinates are (reference 15, p. 101):

Thus,
h,dx, hfly, h_dz

(ds)_= (hJ'(dx)_ + (hJ(dy)_ + (h_)_(dz)_= (dX)_ + (dY)'_ + (dZ) _

But because

and so forth,

bX bX
dx=5Xbx dx-F-_ dyA-_ dz

and
(ds)_= (1 + cz) _ (dx)_ + (dy)_ + (dz) _

ht=(lq-cz) h,_=l h._=l (5)-
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The expressions for the linear accelerations can be written

directly, as given in reference 13 (p. 158). (It should be

noted that the h values herein are reciprocals of those in

reference 13.) The components of a gradient now are

v

I b I b' I b

h, bx h_ by h3 bz

whereas the components of _oX¢0 remain

Thus the accelerations in the rotating x,y,z system are

_witten as

DU U bU' V _U W bU V bht - bh_\
(v v

W (u bhl bh,\ 1 _o bR
h,h3 \ ' -_-'[z--

DV DW

And the expressions for --D-/- and _ follow from symmetry.

The equation for the divergence now has the form

- 1

div qo=h--_ [_-_ (h2h3_+-_ (h3h_ V)+_ (h,h2W)]=O

whereas the components of the curl _o are

In order to obtain the viscous terms the preceding expres-

sions are used in the expansion of

[grad (div _o)--curl (curl _o)]

If equations (5) are substituted into these general expres-

sions and the differentiations are carried out, the equations

for flow in an orthogonal curvilinear coordinate system rotat-

ing with an angular velocity _ are obtained. The body forces

are neglected here.

U bU bU OU c . 1 _- bR
l + z c _7 + V -_Tj+ W _-[ +1--4_ S W i + z c " l ¢_7 +

2(w_W-- w,V)---- 1 1 bP [ i D_Ul +Cz p bx _-_ "(l +cz) _ bx _

z bUdc b_U b_U c bU Uc _
(l+cz) _ bx dx'__+b-_z _-_ l +cz Dz (l+cz) i+

W dc 2c bW'7

(1 +cz) 3 dx t (1 +ezy _'J (6a)

bV bV ,5V 1U_-+V_y+W Oz l+zc '3R +2(_,U-_W)

1 bP___,[ i bzV z bVdc-7 (1+cz) (1-Vczy dx

b2V .b_V + c bV]by _ _-"b'_z2 l +cz bz (6b)

U _ W ._y w _ W cl+zc bx bV + bz iWzc U_-_R _ +

2(_V--w_U)= 1 bP by[ 1 b_Wb z (1 +czy Or _

U dc z bH rdc b2_l z_211"

(l+ez) _ dz (1-_cz) _ bx dx F by_ _z _

Wc _ c b W 2c _U'] (6c)
(1 +cz) '_ _ 1 +cz bz (1 +-cz) _ _)-x_J

1 OU. bV bg r IVc

l+cz bx t'b-y+-_-z + 1--+-_z =0 (6d)

In the general orthogonal coordinates, the e.xpressions for

the rate-of-strain components are

1 _U 4 V _h, W _h,_e==2 h-_t_ hth_ by _ h_ht bz/

(1 bV_ W bh: U bh_'_

1 b]_'. U bha V bh_'_

h3

h2 b /V\ h,

The viscous terms in equations (6a), (6b), and (6c) may be

expressed using the rate-of-strain components as

1 b2U z DUde b_UWb_Uv (l+ez) _ bx _ (l+cz) a bx dx F-_-_ _-_+

w 7
l +cz bz (1 +czy (1 +cz) _ dx ÷ (1 +ez) _ bx .J

1 be=. be_. be=. 2ee_,'l

_[ 1 b_V z bV de + b2V.___brv .(l _Cczy az_ (l +czy ax _ -6_ -5_,_'-_

= , [-b__e,, 1 be=l_ be,, c ]L_v +_+cz _x F37-+F_ e'_

(7a)

l+cz

(7b)
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1 b_W U dc z bWdcv (1 +-cz) 2 bx 2 (1 +cz) 3 dx (1-}-cz) s bx d--x+

bqT" b2I_ _ Wc 2 c b W 2c i_U]_-_-_ 0z _ (l+cz) _ l +cz bz (l +cz) _ 57

----v 1-{-cz 5x by 5z l +cz (e'_'-e_)
(Te)

Equations (6) are directly applicable to the laminar flow.

For turbulent flow, because of the velocity fluctuations it is
necessary to modify the stresses by addition of the so-called

Reynolds' stresses. Thus, making use of the parallel form
in equations (7), the Navier-Stokes equations of motion for
turbulent flow may be written in terms of the apparent
stresses as

u
t- V_-y-+ 1_ UW-1 --}-cz Ox bz 1 -}-cz

1 2 bR 1 1 bP
1+cz o_R57q-2(o_H'--_,V)= 1 +cz p bx {-

1 [ 1 ba_ bry_ br,_ 2cr,_-I

rbV bV -bV 1L-_+V_-t-H bz l+cz _R +2(_U--_W)

11 5P, 1 ]=-_5-_-+_ +cz _x by _z _+cz_l (Sb)

l+cz bx _-V +W cy 1 +cz U:--_R -t-

2(o_V--¢o_U)= 1 bP_t 1 F 1 br_,
--i_z _t+_ _ +

by _ bz l +cz (a_--a,) ($e)

Simplification for flow within boundary layer.--Equa-
tions (6) and (8) are equivalent to the complete Navier-

Stokes equations. Within the boundary layer, however,
certain terms whose contribution is relatively unimportant
can be neglected. If the y-axis is taken as normal to the
wall, the boundary-layer flow then takes place over the xz-

plane (or the XZ-plane). All terms are now made dimen-

sionless by referring the lengths to some body length, the
velocities to their free-stream values, and so forth, as ex-
plained in reference 16 (p. 45), and all quantities of the order

of magnitude of $ or smaller are neglected. Furthermore,

because the boundary-layer flow along a definite path
z=0 is of interest, additional simplifications are possible.
Setting z=0 restricts the equations, because the general
boundary conditions (not on the x-axis) cannot be satisfied.

It will subsequently be seen, however, that these general
boundary conditions are unnecessary in the solution of the
final equations. These simplifications yield the Navier-

Stokes equations for flow within the boundary layer in a

rotating orthogonal curvilinear coordinate system evaluated
at z----0,

bu+ v bu bU 1 bP _ bR [b_u'_

(ga)
bR 1 bP

--o_:R _-+2(_,u--_w)= P by (9b)

bw bw bw _ 1 bP _ bR o {_b_w_

(9c)

for the laminar ease. For the turbulent boundary layer, a

corresponding set of equations is obtained with the substitu-

tion of for and for 
Equation (9b) shows, as pointed out in reference 10, that

because all the terms on the left-hand side of the equations

are of the order of magnitude of one, within the boundary
layer, P can vary at most by an amount of the order of _.
It is reasonable then to neglect this variation and consider

P solely a function of the flow outside the boundary layer.
Thus, if x is chosen to coincide with a streamline of the flow

outside the boundary layer, V=W=0, and by integration

of equation (ga) with the effect of viscosity neglected the
following relation is obtained:

P:constant--1 .: 1p_,, +_ o_R "- (10)

whiel_ is a form of the equation of Bernoulli.
Furthermore, because outside the boumtary layer the flow

with respect to some nonrotating set of coordinates is irrota-

tional with reference to the rotating coordinates the com-
ponents of the vorticity vector become

_= --2_ l

,_=--2_ (I 1)

i'=--2_J

This assumption of irrotationality is not always true and in

some applications, such as the later stages of an axial com-
pressor, it cannot be used. As long as vorticity is distributed
according to some definite pattern, however, a relation be-

tween the components of vorticity and the components of
rotational velocity may be found and substituted for equa-
tions (11).

Substituting again in the expression for the components
of vorticity gives

--2_=_ [b_-_ (l +cz) U--5_-_ I,V]

And for z=0, W=0, which is along the streamline, the

expressiqn for curvature becomes

c=--(U -]-U (12)
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The equation of continuity remains

bu by bw ^
5_x+_+ST+we=u (13)

6eneralized boundary-layer, momentum-integral equa-
tions.--In order to obtain the boundary-Iayer momentum-

integral equations, equations (9a) and (9c) are integrated
with respect to y through the boundary layer to some con-

stant height d such that

d>__

5 e_ r_ bU f_ _uwd,,+Wjo c

bU .d r_ bb" ro..1 _ ] uwdy+2_ l wdy=Ud (14u)
2 _, oz 3o do bx p

and

| uwdy+<-- I w2dy+c [ w2dy--c } u2dy
ox jo OZJo do do

acr' fj=U bZ Jo dy+2_ udy ro,,p (14b)

These equations apply equally well for the lam{nar or tur-

bulent boundary layer, with the value of ro representing the
shear stress at the wall accordingly adjusted. By suitable
use of equations (12) and (13), these equations may be
transformed to

b r_ 5U r_ b
°

U b-z (5--u)wdy---U (C--u)wdy= -'- (15a)JO " Jo P

and

I uway_ ! w ay--_oxao ozjo _ Jo w aye- F _-jo

bU r_ rd • . 2¢o_ C_ _, 2_ F _ _ , ro ,
=U _z _ dy+2w_J ° uayt_l "'01 w ay--_._ JO u ay-- P-'"

(15b)

The following definitions are now introduced: The mo-
mentum thickness in the z-direction of the flow in the x-

direction,

O==3 fff (U--u)udy (16)

The displacement thickness in the x-direction,

_:=_ fo_(U--u!dy (17)

The momentum thickness in the z-direction of the flow in

the z-direction,

l d

O,=u_ f ° w_dy (18)

The displacement thickness in the z-direction,

, 1 /'d

_'=UJo w dy (19)

The momentum thickness in the z-direction of the flow in

the x-direction,
1 a

O_,=y_ r (U--u)wdy (20)
tz do

The momentum thickness in the x-direction of the flow in

the z-direction,
I _"

O,==-T_ [ wudy (21)
_' dO .

All these thicknesses, as in two-dimensional boundary-
layer theory, have a dimension of length. Furthermore,

$. 1

(22)

With the use of definitions (16) to (21) and equation (22),
equations (15a) and (15c) reduce, for z--0, to

bO_ 1 bUr _ _ =ro_ (23a)5)-+U _-(20,+_:)+ -4_, o_
and

_0, a(,_:--e=) ___U(o_o__;)+bbU-bz _ bx U bz -_--_--(a:-O=)-

2 o_, (O=_i_0,)= ro., (23b)
U pU 2

Reduction of equations to forms obtained by other
investigators.--If only two-dimensional flow exists, that
is, if c=0, w=O, and _=0, then equation (23b) vanishes and

equation (23a) becomes an ordinary K_irmhn momentum-
integral equation

bO_. 1 bU 20 ro

If _=0, that is, if the system is nonrotating, equations
(23a) and (23b) become identical with the equations of
Gruschwitz (reference 9).

Setting c=0 in equations (9a) and (9c) makes these equa-
tions identical with the equations of Burgers (reference 10),
who carried out his derivation for a Cartesian coordinate

system.
Finally, if the system of coordinates is chosen so as to

maintain the right-hand rule and c is set equal to I, thus
r

dz
establishing the x-axis as a circle, then _-_----1 and because

of axiM symmetry all derivatives with respect to x vanish.
The coordinates are now assumed to be in a fluid that is
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motionless at great distance from the surface of the .rotating
immersed disk. Thus,

U=W=O _=0

Integration of equations (9a) and (9c) gives, after some
manipulation,

d
2r _/r (F _ _twcly)=--_ _2rr_

and

(2)£drd r w:dy _ u2dy =_vo.,r
P

which are identical with equations of K.Xrm£n for the
rotating disk (reference 17).

APPROXIMATE SOLUTION OF MOMENTUM-INTEGRAL

EQUATIONS FOR TURBULENT BOUNDARY LAYER

Transformation and reduction of dependent variables.-

In order to obtain a solution of the momentum-integral
equations, additional relations are needed describing the

velocity profiles existing in the boundary layer and the
friction at the wall.

With the use of a suggestion by Prandtl (reference 11),
the expressions for u and w that will be used are

with boundary conditions on (7 and g

(24)

for y=5, C= 1, g=O

for y=O, dr=O, g = 1

and with, defined as

_=-tan a (25)

where a is the angle between the direction of the resultant
skin-friction stress and the direction of the flow outside the

boundary layer. Because of this definition of _, g=l at
y=0 because

5w

i. by
un :- -= {

_--,o Ou

5y
or

_o.,= _ro., (26)

Mathematically, such use of _ implies a linear variation of
w with t and makes possible the dissociation of the w velocity
profile from its scale anal direction. Because the flow must

change direction in the boundary layer from that at the wall
to that in the free stream, there is no reason to assume that

such a dissociation is actually possible. In other words,
there is no reason to believe that g should be a function of

(y/_) alone and not ofcaswell. In accordancewith reference 11,
however, this approximation is certainly admissible for

small values of _ and gives results of qualitative accuracy

for moderately large _. In addition, in order to check this

the value of l w, for severalassumption, experimental
U

velocity profiles and values of _ ranging from 0.216-to

0.670, as obtained from reference 9, is plotted against y/_ in

figure 3. The results of this plot indicate indeed that Gg is
independent of _.

. . ,

I I I L o ,J I

desiqna__ion l I I e_

-_i_"/0 o 445 /8, III" _ _
,, "621 /5 Ill i i i -'

• , _ I I ___--I_08 v .670 18,HI[ I [ c

"021.0,¢i ......

.01

II

.02 £4 .08.08 .I0 .20 .dO .b'O,90ZOO

FIGURE3.--Plot of ! U against _ for various data from reference Q.

In parallel to the two-dimensional boundary-layer theory,
the following definitions are made:

_'_(1 --G) d y
,j0 =H

I --G)G dy

(1 --G)Ggdy
mJ

"d

(1 --G)Gdy
JO

jr/ G g d y
_,K

¢'d

,Jo (1--G)Gdy

_G_g2d y
• _i

_(I -- G)G dy
jo

(27)

The relations among the various thicknesses may then be
written

£=HO, ]

'::T*|
O,= _'LO_ J

(28)
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The quantities H, J, K, and L are functions of G and g.

Because G and g are representative of the velocity profiles in

the boundary layer, the changes in these velocity profiles

must be reflected in turn in the values of H, J, K, and L.

In other words, tim external forces acting on the boundary

layer and influencing the changes in the shape of the velocity

profiles also cause a variation in H, J, K, and L. Unfortu-

'__

0 .1 .2 ,3 .4 ,5 .8 .7 ,8 .9 /.0
v/,t"

l'A_ume'_b"6_,Te_lli I-I I I I I I
__ _Dora of reference I_, po$1hbn I-a_ converted---

to _ _t_ z sysfe#_
_._Do#a of t-efefenee I_ #oosit/o_ I-c, co_ve_ted

LO--1--T tO _, _],Z sysfem _--T_--_..=_ -_ --

.e=A I " ..

"I .-'" °
.'2-_< - -. --

_.4

i -
W I

0 ./ .2 .3 .4 .5 .6 ..7 .8 .9 /.0
: y/d

(a) Experimental velocity profile from reference 9 (p_int 18, III). Data obtained in curved

duct; a- 40 millimeters.

(b) Experimental velocity profile of reference 12 converted toz, y, = coordinate system. Data

obtained in boundary layer of yawed wing.

Fmv_ 4.--Comoarlsoa of assumed (7 and G_ with eml)erlmental velocity profiles. Assumed

profiles: O - (W_) Ut; _l- (YD) _' (1--,it/ll)l.

_.oQ,%.
\

.8 -,q

I_'.4

A_i_I I ill t {_trot-}__
o Oaf_ofreference lg, posit,On t-a,

converted'to z, ll, Z system
o o Dote of reference _?-,position l-c,

1 t converted tO z,i],Z system L
_< _ ,- '_. , ,

.8 .9 LO0 .I ._ ...3 .4 .5 .6 .7
v,/,_

FI5UaE 5.--Compartson of assumed correction runetion g(y//I) with data of referenc_ 12 con-

verted toz, 1L = coordinate system. Assumption: g(yD)=(1-y/_)t

nately, the available data of reference 9 do not involve

large changes in the shape of the velocity profiles and the

quantities H, J, K, and L. This behavior of the velocity

profiles is verified in figure 3. The data of reference 12-do

indicate large changes in the shape of the velocity profile;

however, the data are not presented with sufficient detail to

permit an accurate evaluation of H, J, K, and Z. Thus,

until more extensive experimental data become available,

the quantities H, J, K, and L are. assumed to be constants

that can be evaluated either by assuming a suitable form for

G and g or by computing directly from Gruschwitz data.

In accordance with reference 9, good assumptions for G

and g are:

,:(,-wl
(29)

An indication of the degree of fit afforded by these expres-

sions can be obtained from figure 4 (a), where a calculated

profile with n----7 is compared with one of the profiles of

Gruschwitz. Other profiles of Gruschwitz data give similar

results. :It should be noted that this good agreement should

not be interpreted as meaning that assumptions (29) wil]

always give a good representation of the velocity profiles in

the three-dimensional tm'bulent boundary layer. Figure 4(b)

shows a comparison similar to that of figure 4(a) with pro-

flies converted to the x,y,z system using data from reference

12. Equations (29) do not afford a good fit in figure 4(b),

although the equations do represent the general behavior

of the velocities. This comparison is further illustrated in

figure 5, where the value of g (y/_) as obtained by converting

the profiles of reference 12 to the x,y,z system at indicated

points is compared with (1--y/_)t

With the use of relations (29), H, J, K, and Z are com-

puted as

n=(1 ln+7)

J--(2n+ 1)(3n+ 1)(3n +2)

K= 2n_(2 + n)
(2n+ 1)(3n+ 1)

6r_ _

L=(3n + 2)(2n + 1)(5n+2)

(30)

which for n = 7 give

H= 1.2857

J=0.5423

K=2.6727

L= 1.1285

} (30a)
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Averaging the values along line III of Gruschwitz data
(fig. 2) results in

H---- 1.37 1
/

J=0.550_. (305)

K=2.43 /

L=0.968J

This relatively good agreement between the two sets of
values is also indicative of the over-all fit of the assumed

expressions for G and g to the data of reference 9.
The additional relation that is needed for the solution of

the momentum-integral equation is the expression for surface
friction. In reference 9, Gruschwitz demonstrates that
K_rm_n's friction law

r°'_ =a n 1255 (_-_) t (31)
pU 2 _.-

appears to be valid in the three-dimensional boundary layer
as well. Substituting relations (26), (28), and (31) in

equations (23) yields

bO= 5,_4 _ r.,=b0,. 0_ bU (2+H)+J_ _z+JO_ Oz

and

2Lo,_ 37+(K--d)o, -_+(K--J)_ -_+

O_U _ -. - O, bU +L.:,)2_ ro,_
(L.2-- I--H) -_-_7+-( K--J). -_-_yx --(1 --_- 0== --. 7_

(32b)

Because of the form of the relation for friction, an advan-
tageous transformation of variable is

0= O,Re w_ (aa)

in order to eliminate the Reynolds number from the equa-
tions.

With the use of equations (3a) and (12), two nonlinear
partial differential equations for O and _ applying along z=0

are obtained from equations (32),

_0 i),t - (r'(5H+O) 1 i)UA_4 bO 4_4 j. _--_+ JOg_z 5 _z ikt._/g:-57-

g
and

4 (K--J), be. 4 be _z+2Zo ' _,+_+_ L. 2 _-_+ (K-- J)0 i_z

Z 0 057 (4 --H) c0--[9 (K-- J). _ -b-7-- \_ L.'-- 1

(_ , _\2% 255,]=0 (34b)-- , --H)--(- 0+0.01

As shown in the appendix, these equations can be either
hyperbolic, parabolic, or elliptic, depending on the shape of

the velocity profiles existing in the boundary layer. For
u=U(y/$) w" and g=(1--y/8) _, the equations are always
elliptic•

Simplification of equations and approximate solution.-
The relative importance of the various derivatives in equa-

tions (34) is now determined. First, 0 and, are assumed to
be quantities that are smaller than one, which can be accom-
plished simply by referring all lengths to a total path length

S and a to 45 °. As a result of this assumption, all deriva-

tives in 0 and , become of the order of magnitude of 0 or _.
Equation (34a) is then divided by 4/5, so that the coefficient
of i_O/bx is 1 and the coefficients of i_O/bz and 5,/_z are J_

5
and g JO, that is, of the order of magnitude of _ and O,

respectively. In a similar way equation (34b) is divided by

(K--J)O so that the coefficients of bOiSz and _t'bx become
4

_/0 and 1 (order of magnitude of one), respectively, and
4 _

those of 50/5z and bUbz become _ L _ and 2L _ (order of

magnitude of ,), respectively. Then, if _ is small as com-

pared with tan 45 ° and O is small when compared with S, all
terms of the order of magnitude of _, 0,, and 0 _ may be
neglected, which gives

and

_0, [-/5H+9\ 1 bU'-I
_x _-L_-Y-) F _yJ °=°'°1569 (3Sa)

_.+[-41_0+9 1 bU 0.01255 01_]bx L5Obx 5Ubx t (K-or) '

(35b)

These two expressions show that the primary changes in
0 and , in equations (343) and (34b) occur only in the

x-direction and thus the description of the phenomena only
at z=0 is justified.

A solution of equations (35) can now be obtained by suc-

cessive approximations because U, _y, and c are assumed to
be known functions of x. First, equation (35a) is solved,

{ SH+_%

(-_) -_ 0"01569C"-_s,,;% (,H+%b U \ * Idx (36)
U _--v- _ .

The values of Or(a) are then used in an approximate solution

of equation (35b)

4 9

(0,"_'(U,"f 1 h 1

(J--K) (0,) _U s E_ (x)

.r;r ' '(1 +H)c+H (O,)aU_E,(x)dx
i "

where

Et(x) ---e (K-J)J x' o,

(37)

(38)
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With ¢_(x) known, the approximation for 0 could in turn

be improved by again solving equation (35a). If a grows

large along the path, however, it is more advantageous to
consider the following equation:

bO_ _ bO_F/hH+9"_ I bU , "J _ ,_]_-r- a _ ---v J _ -_

(39)

It is thus hoped tha t neglection of b_/bz will no t affec t the ac-
curacy of the solution to a very marked extent. The solution
of equation (39), which may be obtained by the method of

L_grange, is

0,= ¢ z--J , _dx {_H+r_ +
U_ _ "E_(x)

0.01569 E_(x)
"jr U\-W-] E_(x) dx (40)

[ _ _ /E_(x)"
where

and

E._ (x)- e_ c._-- ' (41)

E._(x)--e _ J" (42)

¢(z-J;i_ dx)

is an arbitrary function satisfying the boundary condition;

when x=x_ and z=0, then On=0_. Setting

0-C,
at x=x, gives X=0. In addition, for z=0, X is of the order of
magnitude of e.

Expansion of _b in *[aclaurin's series about X(x_) yields

¢ (x) = _,(o) + x_/(o) + _ _"(o) +...

Because there is only one boundary condition, it is possibh,
to determine only one of the constants in this expansion;
consequently, _b cannot be uniquely established. The fact

that X is of the order of magnitude of _, however, suggests
that the assumptions made for _'(0), _bm(0), and so forth,

are successively less important. Thus these derivatives may
arbitrarily be expressed by a single constant,

.. U_ < 4 ] ea__ (X) = O,L",t'--i--)(l + A X+ _ H- .)=0,

(43)

where A from purely dimensional considerations must have
the dimensions of l -t. From expressions (41) and (42), it is
suspected that

A=B(4 184U,_) (44)

where B must be obtained from the experimental measure-
ments.

It should be noted that because _b(;_) cannot be uniquely

determined other functions of X satisfying the single boundary
condition could be used as well. The function eax is chosen

only because it is convenient to use and parallels the expres-
sions (41) and (42). This arbitrariness of the functional form
of ff and the value of A is due to the consequences of assuming

z----O, and thus it is probably not advisable to carry any
further approximation for _u and so forth.

In solving equations (36) to (44), either set of vaIues for
H, 3", K, and L may be used. Because the averaged values
(30b) are probably more representative, having been obtained

by evaluating experimental data at a number of different
positions, it is advantageous to use these values in com-

putations.

COMPARISON WITH EXPERIMENT

In order to check the validity of the approximate solution,

the boundary layer along four streamIines of reference 9 was
computed and compared with the measured values. The

designation of the streamlines and data points is illustrated
in figure 2. Because the data were taken along curves I to
V of figure 2, the computation along a streamline requires

first an interpolation among the various data points. As a
result of this interpolation, the computations could not be

carried through the full length of each streamline. Values
(30b) were used for quantities H, J, K, and L. The constant
B was obtained by fitting along streamline 8 the solution

for Ou, so that at x=S, 0.--_0 measured. In this manner,
the value of B was found to be 38.5. This value was then

used in computations of streamlines A, C, and /3. It is
noted that B = 38.5 _ 7 (Rd/_) _, although ]ustification for such

a dependence cannot be made. In all integrations Simpson's
rule was used.

The results of the computations are plotted in a nondi-

mensional form and compared with the interpolated measured
values in figures 6 and 7. A study of these figures reveals

a fair quantitative agreement betwecn the measured and
estimated values of 0 and a. As the values of _--_tan 45 °

(fig. 7) the first approximation for 0 in figure 6 becomes

progressively worse, which is remedied by the second approx-
imation. The poorest agreement is obtained along stream-
fines A and D, which because they are closest to the walls

might be affected by the flow in the corners of the duct.
Streamline D especiaIly may be affected inasmuch as

Gruschwitz mentions the e.xistence of separation on the
convex wall.

The fair quantitative agreement with the measured values
is not to be interpreted as a conclusive check of the validity
of the procedure and the assumed values in all cases of three-

dimensional boundary-layer flow. The suggested procedure
simply represents the best that can be done in view of the

meagerness of the available data. Because the Gruschwitz
data do not involve the effects of uniform angular velocity

1 bU 1 5U
and because the variations in _-b--zz and_ _ are small,

7
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FIC, L,I_Z 6.--Comparison of calculated and measured generalized momentum thlck'uess. Experimental data from reference 9,
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it could be maintained that this check of the procedure has
been carried out on a somewhat special case. For that

reason, it is desirable that additional experiments be carried
out in setups that eliminate the present shortcomings. A

larger variation of Reynolds number should also be used.
With additional ex-periments, a modification of the values

of H, J, K, T., and B, together perhaps with some refinements

of the procedure, will be in order. It might be well to remem-

ber, at such time, that because of the necessary empiricism
involved (which results from the very limited knowledge of
turbulent phenomena), long and tedious computations would

rarely be worthwhile.

CONCLUSIONS

The following conclusions can be drawn from an analysis
of the three-dimensional momentum-integral equations and

a comparison of the numerical results with the Gruschwitz
data for turbulent boundary layer:

1. Within the boundary layer the static pressure can vary

24

2O

8

0

__ Measured

.... Co/ouloted /

L

.2

/
I

/

I
I
I

l
I

I

I
I

I
f

at most by an amount of the order of magnitude of the

boundary-layer thickness _.
2. It is possible to generalize the velocities in the boundary

layer by use of two characteristic quantities _ and _ where
is the tangent of the angle enclosed by the direction of the

resultant skin-friction stress and the direction of the flow

outside the boundary layer.
3. When the generalized boundary-layer momentum-loss

thickness 0 is small as compared with the total path length

and • is small as compared with tan 45 °, the primary changes

-- Measured
.... Calculated

36
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(a) Streamline A; _=2"2.8 inches. (b) Streamline B; S-34.75 Inches.

F_(_t_ 7.--Comparison of calculated and measured boundary-layer deflection at wall. Experimental data from reference 9.
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in O and _ occur along the streamline of the flow outside the
boundary layer.

4. The three-dimensional boundary-layer momentum-
integral equations can be either hyperbolic, parabolic, or
elliptic, depending on the relative magnitude of the parameter
M'N, which in turn depends dn the shape of the velocity

5_
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profiles existing in the boundary layer. The power-law
profile when used with the correction function g= (1--y/S) _
always results in elliptic equations.

5. The approximate solution of the three-dimensional
momentum-integral equations shows a fair quantitative
agreement with the values measured by Grusc_witz.

6. Additional experimental data are necessary to establish
more generally applicable values for form parameters H,
J, K, and L and B, the constant used in the second approxi-
mation for O.

LEWIS FLIGHT PROPULSION LABORATORY

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

CLEVELAND, OHIO, November 1",1950
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F_C, URZ 7. Concluded,--Comparison of calculated and measured boundary-layer deflection at wall. Experimental data from reference 9.
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APPENDIX

ADDITIONAL REMARKS ON'THREE-DIMENSIONAL

BOUNDARY-LAYER MOMENTUM-INTEGRAL EQUATIONS

In order to obtain the approximate solution of equation (34),

it was shown by comparing the relative order of mag-
nitude of the coefficients that some of the terms may be

neglected. Care must be taken with such simplifications
inasmuch as various implications of the equations in question

may be obscured by tlds procedure• For this reason, aside
from the approximate solution, the character of equations (34)

was also investigated in detail.
By use of the procedure outlined hi reference 18 (p. 38),

along z=0 the system of equations (34) is found to be

hyperbolic when _IN> 1, elliptic when ._IN_ 1, and para-
bolic when MN= l, where

M. L 0_0,
?¢-------(K----J)J---- 8_-_, # 0 (45)

Because J, K, and L are functions of G and g, the character
of equation (34) depends on the shape of tim velocity profiles

in the boundary layer.
It should be noted that when _'vlN= 0, then L= 0, which is

only possible if G=0 or g=0, and hi turn u=0 or w=0. If
the trivial case u=0 is neglected, it is established that when

w=0, _=0 as well. But for _=0 and w=0, equations (34)
reduce to a special case

and

4bO. 0 bU(5_9)5 5x F_-_ _-x 0 01'2-55 (46a)

2o_ I+H 0.01255 (46b)
U H c= 0

Here equation (46a) is an ordinary two-dimensional boundary-
layer momentum-integral equation for 0 and equation (46b)
is a relation that evidently must exist among U, bUfOz,

o_, and O, when ,= 0 and w= 0.
When the equations are elliptic, no real characteristic

direction can be found. When only one characteristic direc-

tion exists, the equations are parabolic and in the hyperbolic
case two characteristic directions through each point of the

xz-plane are obtained. For the parabolic case then,

dz

and for the hyperbolic ease,

,lz L + xrL '7 _d(K-d) L
,77 =_'+=_ (K-J)

,l z L -- ,i'-L'_JJ (K- d) L
_=¢-=_ (K--J)

and the characteristic lines are asymmetric with respect to
the x-axis. In order to determine whether elliptic, parabolic,

or hyperbolic equations aplJly, the magnitude of MN is com-

puted. Substituting from expressions (30), ,_IN is obtained
in terms of n:

MN -6(3n+l)(3n+2) 1 1 108n+96
(5n+2)(1 ln+7) 55 55(55n_+57n+ 14)

This equation shows _IN to be a monotonically increasing
function of n. For n=0,

MN=
7

and

lira MN =54
_® 55

These results indicate that a so-called power-law 1rofile when

used with g=(1-y/a) _ always results in equations that

although elliptic are very near to being parabolic. Using
values (30b),

,_1N=0.936

which again indicates an elliptic character of the equations.
It should be remembered, however, that the assumptions for

G and g were made on the basis of only one set of data; con-

sequently there is no assurance that the velocity distributions
existing in the boundary layer will always give the same
values of ,¥IN. In fact, it is generally-more likely that they

will not give the same values of :_IN. Some indication of the
variation of M'N may already be obtained from figure 8,
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FigURE 8.--Values of parameter 3fN for data of re fete,tee 9.
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-£_7;:!_]._i{__j7 jr._, its vahle was plotted for each Gruschwitz data point.

(:.(;;_:[:i:i!':_ /points 5, 6, and 7, however, small values of w may have

:::(:{_!.:!)_;(::j /_revented an accurate determination of L and as a con-

:_:_-::iii':_:_::_:'_/sequence .iS/N=0 there. The value of .k/N in figure 8

:;7i':;:,:;7_:_ / varies within the limits 0.65_nzV/N _ 1.2, with the bulk of the
:::;./_i!::;'/ points indicating that ._[N 0.9"5.

-_::_!_ii:_./ On the basis of the preceding discussion, there is some

_:::!!_:! evktence of the equations being parabolic, elliptic, and hyper-

_:i_i:_iii bolic in the turbulent boundary layer. It is interesting to

REPORT 1067--NATIONAL ADVISORY COMMI'rTEE FOR AERONAUTICS

note that generally (as in supersonic and subsonic flow, for

instance) these hyperbolic and elliptic regions have their

counterpart in physical phenomena. Thus some essential

differences might exist in the process of momentum transfer

between the hyperbolic and elliptic regions. These differ-

ences cannot now be ascertained because first equations sim-

ilar to (34) with z#0 would have to be obtained, and there

is no mention of any irregularities in the behavior of the flow

in reference 9. When additional experiments are made,

however, it would seem advisable to study closely these two

mathematical regions in order to obtain some indication of

the physical make-up of their differences.
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